Physical testing of performance characteristics of a novel drag-driven vertical axis tidal stream turbine; with comparisons to a conventional Savonius
نویسندگان
چکیده
An experimental study of the performance and optimisation of a prototype novel drag-driven vertical axis tidal stream turbine is presented. The drag turbine has several unique advantages, including simple blade design, deployable in shallow waters and potential denser array spacing. Performance optimisation was conducted in the hydraulics flume at Cardiff University (CU), where the turbine reached Cpmax/k = 0.132/0.441 for its 90 phase angle configuration. The CU turbine was then tested using the wider and deeper hydraulics flume at IFREMER, France. Testing at IFREMER reduced the blockage factor from 17% at CU down to 1%; into the range of unblocked conditions. Testing in an unblocked environment, under similar flow conditions, reduced the peak efficiency of the CU turbine by 43% to Cpmax/k = 0.067/0.346. Finally the CU turbine was compared to the performance of a Savonius turbine. The design of the Savonius was based on a literature review. The CU turbine showed inferior efficiency values compared to the performance of the Savonius. The Savonius reached Cpmax/k = 0.098/0.962 in unblocked conditions, 46% greater than Cpmax of the drag turbine. 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).
منابع مشابه
Experimental Studies on Savonius-type Vertical Axis Turbine for Low Marine Current Velocity
Renewable energy resources need to be explored to maintain and meet energy demand and replace the slowly depleting fossil fuels. Malaysia, surrounded by sea with long coastlines, is poised to exploit the potential of this energy. This research work aims at designing a suitable device to extract energy from Malaysian sea current. Malaysia’s ocean has a low current velocity averaging 0.56 m/s, ...
متن کاملComputer Simulation Studies on the Effect Overlap Ratio for Savonius Type Vertical Axis Marine Current Turbine
The Ocean has provided a new avenue in the quest for renewable energy. One potentialsource of energy is marine current, which is harnessed using either vertical or horizontal axis turbines.This paper describes a particular type of vertical axis turbine which is suitable for low current velocityapplications. The simulation of Savonius-type turbine, which hitherto has never been proposed formarin...
متن کاملComputational Fluid Dynamics Prediction of a Modified Savonius Wind Turbine with Novel Blade Shapes
The Savonius wind turbine is a type of vertical axis wind turbine (VAWTs) that is simply composed of two or three arc-type blades which can generate power even under poor wind conditions. A modified Savonius wind turbine with novel blade shapes is introduced with the aim of increasing the power coefficient of the turbine. The effect of blade fullness, which is a main shape parameter of the blad...
متن کاملApplication of guide blades for improving performance of savonius wind turbine
Application of guide blades is an appropriate method for improving aerodynamic performance of savonius wind turbine. Guide blades gather the wind energy around the turbine and guide them into the concave side of savonius rotor. In this paper, numerical investigation is conducted for evaluating effect of the guide blades on the performance of savonius turbine. Aerodynamic performance of the turb...
متن کاملUnsteady aerodynamic performance of Dual-Row H-Darrieus vertical axis wind turbine
H-rotor Vertical Axis Wind Turbine (VAWT) is one of the most efficient energy suppliers which have been investigated in many recent types of research. The aim of this work is to study the aerodynamic performance of a doubled-row H-Darrieus VAWT. First, an ordinary three-bladed VAWT with NACA4415 profile is simulated by means of 3D computational fluid dynamics (CFD) and results are compared to a...
متن کامل